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- Objective

The objeCtive Of this presentation is tO provide ah
overvView Of nuclide identifiCation, quantifiCation, anhd
unhcertainty using gamma-ray spectrometry.
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art 1: Nuclide 1dentification

The £Irst Step Ih 8 8aMmma-ray analysis oF an /tem Is
to getermine whHat Lamma-emitting nuclides are
present /h the ritem.

Gamma-ray spectrometry can be used for relatively rapid, initial, non-destructive identification of radionuclides in

g

an item of interest before destructive analysis methods are employed.



Gamma RayYs as “Fingerprints for Radionuclides”

e (aMmmMma rays are SpecCifiC to a radionhuclide

1001 keV \

1001 keV

o %

186 keV

1001 keV

186 keV

Counts

Livetime: 325.3 sec Deadtime: 10.61 % Neutrons: NA

| 186 keV

\M 1001 keV

Energy (keV)

Gamma-Ray Spectrum: Histogram of energies

deposited in the detector. l




Gamma RayYs as “Fingerprints for Radionuclides”

The observed gamma-ray Sighature Can Chanhge with measurement
conditions such as shielding or detector type.

Counts

100-

Livetime: 234.1 sec Deadtime: 24.31 % Neutrons: NA

('-WF**

2nd Spectrum Multlpller 0 74

Sodium lodide (Nal)
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Photon Interactions with Matter

Photoelectric Effect Compton ScCattering Pair Production and Annihilation

ysnke\}LL\lLL

et e= annihilation

/\\ .
= /\_/ Incident y }3 }}
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[ ]
photoelectron

recoil electron

- Required to measure full-energy peaks - Origin of the continuum - Single and double escape peaks

- Also contributes to continuum - Also contributes to full-energy peaks - Annihilation radiation
- Also contributes to full-energy peaks




How do Photon Interactions Affect the Data?

Counts

108

102

10%

103

102

101

100

Livetime: 23008 sec

Deadtime: 1.89 % Neutrons: NA

L.

Full-Energy Peaks form the primary signature

o

Continuum, Backscatter, Compton Edge

Also sum peaks,
escape peaks etc.
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(Jsing Pattern Recognition

Pattern recoghition Can help expedite ahalysis
Different measurement conditions Cah Chanhge the observed pattern

Counts

10%-

103~

102~

1014

Livetime: 234.1 sec Deadtime: 24.31 %

Neutrons: NA

BLU: Bare Plutonium (6% Pu-240)
BLK: Shielded Plutonium (6% Pu-240)
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Using an Energy-Based Search

Anh energy-based Confirtmationh of nuclide identification should always be used

You must have a good enhergy Calibrationh to do this.

Counts

1074
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Deadtime: 6.01 %
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(Jnderstand the Natural Background

Counts

Livetime: 171452 sec

Deadtime: 0.37 %

Neutrons: NA

10° -

107 4

109 4

Pattern recognition of “landmark” peaks, such as those from K-40, Th-232, and U-
238/Ra-226 in the natural background can help with energy calibration.

Also, having a good knowledge of background energies can help

K-40 (1460)

sort out peaks from nuclides that are not part of the natural

background.

Th-232(d) (2614)

15'00
Energy (keV)




Comparing your {Jnknown Jtem to Background

Counts

Livetime: 6000.0 sec Deadtime: 14.78 % Neutrons: NA

107 5

1081
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BLU: Background

BLK: Unknown Item

1004 .
Livetime Normalized

Peaks only from the
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background peaks
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r Spe ffects: Random CoincCidence

Livetime: 276.7 sec Deadtime: 7.76 % Neutrons: NA

662 keV 1st y-ray from

10°4 one nucleus

DETECTOR
CRYSTAL

source

60% DT 662 + 662-keV

Effectively simultaneous y-ray

b ms_\uww- Random Sum from a different nucleus
= \ \
(&) |
®)
10°-
K-40 (1460)
10"
| LUK Lm0 L
1094 | |||||||‘ N
| I 1 I I | 1 ! I ] I | r ] L ] |
0 500 1500 2000
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r Gpe fects: True Col

2 simultaneous y-rays from
same nucleus in the far field

DETECTOR
source CRYSTAL

2 simultaneous 7y-rays from

same nucleus in the near field

DETECTOR
CRYSTAL

source



EsCape Peaks ¢ Anhnihilation Radiation

Escape Peaks

Annihilation Radiation

Livetime: 60000 sec

Deadtime: 0.28 %

Neutrons: NA

Double
Escape”

\

Single
Escape

/ 2614.5 keV

Livetime: 58740 sec Deadtime: 0.56 % Neutrons: NA

511 keV

In this case there is no pair production

occurring, but 22Na is a positron emitter and
we still have positron annihilation occurring
outside the detector.
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100 *NOTE: The double-escape peak is at 1592.5 kev but 100_
there is a contribution to this peak at 1588 2 keV from 222Ac
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Neutron-Induced Gammas

Neutron-Capture [ines
Neutron-InelastiC SCattering [ines
counts above 261¢.5 ke

Neutron “ski slopes” ih germanium

Livetime: 9773.4 sec Deadtime: 5.17 %

Ge(n,n’)

Counts

Counts
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Livetime: 57457 sec Deadtime: 10.39 % Neutrons: NA

Fe(n,n’) H(n,y)

Continuum above 2614 keV /

2223
K-40 (1460)

M

From neutron-induced peaks at
higher energies
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Bremsstrahlung

Path of
= incident
electron

\
o
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Counts
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BLU: Background
BLK: Sr/Y-90 Source
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Degenerate Solutions

o Cometimes (not often) the search result Will Clearly indiCate a single isotope
o (Jsually, there will be several possible sources

Primary: Detective Pu.chn Live time: 285 .4 sec True time: 309.42 sec Date & time: 6/6/2005 12:34:15 PM Reference: Detective LU177m.chn

177m u(413.66 keV) ~

a —

239Py(413.72 keV)

Log counts per keV
W
|

—

N
]




Real-World Example

o Chipment seized by (J.S. Customs on suspiCioh of smuggled special
nucClear material.

Submission email:

“Per our conversation, see GR-
135 file for analysis. In
addition to the neptunium-237
we are getting a plutonium-
239. (See attached file)
sixmin~1.dat”




[image: image1.png]





This the area of concern












Energy (keV)

e TRadioactive boxes contain g1ass. £ ol
¢ GTZTIBS reports Np"237 ¢ Pu-239_ % 1600 —
o Analysts identified LLu-176, no Np, no Pu :

100 |-

This is the commodity, crystal looking stuff, manifested as
scrap material.

Real-World Example o ey

Ener

gy (keV)

150 200 250
T T T

Counts / Channel

300 350 400 450 500
1 T T T T
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This is the commodity, crystal looking stuff, manifested as scrap material.












art 2: Nuclide QuantifiCation

The second Steb i/ a Lamma-rady analysis ofF an Py
item is often to determine how Mmuch OfF each a
Lamma-emiteing nucliae is present ip the rcem.

2

3.7E4 Bg 3.7E10 Bq

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering
the questions what, where, how, when and why an illicit activity occurred and possibly who was involved

g



MathematiCs for AcCtivity QuantifiCation

e _CE) 1
T TV E) e (B)
Ty /s A

Mass = Actvity -5 o 6.022E + 23

C(E): count rate for a specific gamma-ray peak

Y(E): yield (branching ratio) for that gamma ray

Eaps (E): absolute detection efficiency at that gamma ray energy
T,/,: half life of the nuclide emitting that gamma ray

A: atomic mass of this nuclide

—‘



Absolute Detection Efficiency

S

Solid Angle: Of those, what
fraction (geometrically) reach
the face of the detector?

W\

nn,

e Of the gamma rays emitted ...

My W

—Ww» YW\

S

~

Self Attenuation: What

Intrinsic Efficiency: And of those,
what fraction deposit their full
energy in the detector?

fraction escape the source
with their full energy?

External Attenuation: Of those, what
fraction transmit through any intervening
material with their full energy?




golid Angle

R

Y

v 47 Gayssian Surface
Golid angle fraCtion out Of ¢p Steradians for
a detector with radius R at g distance r

from the source where 0 = tan''(R/r):
Q 1 (
Ao 2

1—cos6)




Inverse-Square Law

Let’s say 1 square = the area
covered by your detector. Count rate

B | T2

\ distance = 2r

area needed for same rate =4A
=A Rate for 1 square = 100 cps
.8. 400 cps

- 1f You double the distance, the count rate drops by @ faCtor Of ¢ -



The Importance of Source-to-Detector Dista

The observed dose rate in these

detector distahce to CalCculate
the aCtivity or mass Of the source.

But the farther source is much more intense!

—‘



External Attenhuation

e JFf we kKhow the type and thiCkhess Of intervening (exterhal)
attenuating materials we Cah Correct for their effect.

Full-energy photon ﬁ
intensity reaching

Full-energy detector

photon intensity IO ‘ w— | .

from source

I — IO e HpX correction
B factor

l_‘_\
We measure an intensity/, but to determine _ I _ Ie+upx
activity of the source we need to know I, 0 —

S—



Self Attenhuation

e E.g2. SNM metal is high-2, high-p material. Tt is very good at
attenuating gamma rays, even those from itself.

Red Arrows: 186 keV ~ 2.5 mm of U metal totally blocks 186 keV
Blue Arrows: 1001 keV ~ 50 mm of U metal totally blocks 1001 keV

Assume 2.5-mm wall
S I I thickness of U metal.
4—

At our detector we see the same amount of 186-keV gammas for both cases above.
But we see less of the 1001-keV gammas in a relative sense from the thin-walled box
than the solid block.




Self Attenhuation

e e must integrate over the attenuation experienced at all points in
the item at all energies Of interest.

In the 1-dimensional case below, photon 1 must transit
much more material to escape the item than photon 2.

T = e #PD
o . correction
factor
measured full-energy [ A )

photon intensity
N [(—In(T)
10 — I .
full-energy photon intensity ~ 1 T T
from all atoms in field of view




Relative Efficiency

« General Expression for Peak Area Count Rate: C(E) = AN - Y(E)e,(E)

C(E) = count rate at energy E
A = decay constant
. N = number of nuclei
€ (E) — 1 C(E) Y(E) = branching ratio (yield) at energy E
A AN|Y(E) ¢4 (E)=absolute efficiency at energy E

e TRearrange

e TRelative efficiency is proportional to counts ahd branching ratio

C Relative Efficiency depends on:
ER XX — Intrinsic Detector Efficiency

Y Attenuation




‘Flattening’ the Relative Efficiency Curve

e JA shielded 226Ra source was measured

e Qur goal is to vary the amount of Pb to “flatten” the RE Curve
— The corrected data should be linear with energy
— The slope of the corrected data should be ~zero

e (Once we have corrected for RE effects we Cah CalCulate the activity

. . REL. EFF. PEAKS HIGHLIGHTED
The green curve is a fit to the raw

RE data. 352
295 2

At each energy we apply the i

intrinsic detector efficiency and

vary the shielding to obtain the ) ; . Corrected RE curve

corrected curve
!_1_\
o tupx

Eint



Case 1: Bare Point Source

Here we measure the activity A Of ah unshielded 37Cs source

— Distance: 25 Cm
— Detector: ORTEC Detective (s_Abs (662 keV)@ 25 Cm = 2.7E-0¢4)
—  662-keV photon Yield: 0.851

— Live Time: 110112 seconds
Count Rate = 71 cps
—  662-keV Peak Area: 7823347 +- 2851 P

Livetime: 110112 sec Deadtime: 1.95 % Neutrons: NA

_C’(E). 1
Y(E) eaps(E)

A

Counts

A=-"L1 ~__ =3.1x 105+ 113 Bg*

"~ 0.851 2.7x10~% /

Energy (keV)

—

*NOTE: The uncertainty is based on uncertainty in counts. We will address this later.




Case 2: Point Source + External Attehuation

e Here we measure a shielded 226Ra source
— Distance: 25 Cm
— Detector: ORTEC Detective
— Live Time: 301 seconds

REL. EFF. PEAKS HIGHLIGHTED
Attenuation correction

at each energy 3?2

295

i

@ 1 o

T Y(E) eaps(E)

Error-Weighted Activity = 4.21E6 + 2.47E4 Bq

A

Corrected RE curve

En/

E [keV] Yield Counts Err RE Ermr DetEff Mu e upx RE Corr Activity [Bq] Err
242 7.43E-02 11208 171 1.51E+05 | 2.30E+03 7.30E-04 7.28E+00 6.40E+00 1.32E+09 | 2.02k+07 4.40E+06 6.71E+04
295 1.93E-01 42051 238 2.18E+05 1.23E403 5.65E-04 4 72E+00 3.33E+00 1.28E+09 7.29E+06 4.27E+06 2.41E+04
352 3.76E-01 91693 323 2.04F+05 | 8.60E+02 | 4.47E-04 3.33E+00 2.33E+00 1.28E+09 | 4.49%+06 4.24F+06 1.49E+04
609 4.61E-01 98212 322 2.13E+05 6.99E+02 2.28E-04 1.39E+00 1.43E+00 1.33E+09 4.37 é@f: 4.42E+06 1.45E+04
665 1.46E-02 2862 84 1.96E+05 5.73E+03 2.08E-04 1.24E+00 1.37E+00 1.29E+09 3.77 E+D\?\ 4.29E+06 1.25E+05 A




Case 3: Extended Source + External Attenuation

e Here we measure a shielded Pu source '
— Distance: 91 ctm M“ML
— PDetector: [,N2-cooled HPGe
— Live Time: 986 seconds

External Self Attenuation

Attenuation \ e

l [ \
C(E) 1 [—ln(e_“px) REL. EFF. PEAKS HIGHLIGHTED

— : . etupx
Y(E) “eaps (E) 1—ehov |

Energy (keV)

At each energy we correct for detector

efficiency, external attenuation, and now self Corrected RE curve
attenuation. ) )

In this example, self attenuation limits our
calculated mass to < 20% of the true Pu mass.




art 3: Jncertainty QuantifiCation

e must consider the uncertainty involved at _T
each Steb and how 7/t propagates to the £final
resuftc.

-3lo' -2lcr -G 0 <Is 26 3|cr
X

Nuclear forensics can support the investigative authorities identify the truth about a specific incident by answering
the questions what, where, how, when and why an illicit activity occurred and possibly who was involved

g



What is (JnCertainty?

EVvery measurement result is subject to random and possibly systematiC
Fluctuations that we Call ‘uncertainty’ (and sometimes ‘error’)

e EVery measurement result should be stated with itS assoCiated uncertainty.

— E.g. Urahium Enrichment: 25(J % =19.9 + 1.3 %

e TJF we repeat a measurement manhy times we Will get g distribution Of results. The

width of that distribution is related to the unhcertainty.

140

120

100

80

60

Coutn Rate

40

20

R Dt *%0g%e ..o.“

10

Count Rate

20 30
Measurement Number

40

50

=)

[ B o B ¥ S - ¥ o B =

Count Rate

L= =~~~ = =~~~ = = =]

bt et e e et e it e it e e e e e

_ = = e = e e

- 0 A4 A A = ~



U ncertainty Definitions

ACCUracy: DescCribes the average Value

compared to the true Value.

e TPrecision: DescCribes the variations or
dispersion Of repliCate measurements.

e TPias: Difference between the average Value
and the true Value.

e TRandom Error: Variable error onh repliCate
measurements.

o GCystematiC Error: All repliCate measurements
have the same bias.




Probability of X humber Oof events occurring
in g given period Of time or space.

The events oCCur independently

The probability that ah event ocCurs does  °?
not Chanhge with time. 0.18

0.16

£ 0.14

E.8.: 1 nhg of Z9Pu — 2.3 deCays/secC.
What is the probability of 3 decays
OCCurring inh g 2-second period?

0.12

=
'_I

e 9
o o
o 00

P(x events in 1 period)

= 1 period =2 seC — A = ¢.6 decays/secC.
= X=3 deCays 0.02

o
=
B

- P(x=3) = .63 €*(3! = 0.16 o N

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Events/Period

P(x) =
X.

A=¢.6

X =3




Probability Distributions: Gaussian

X = center Of distribution

= gverage Of mahy measurements G (JC ) —

O = Width of distribution

= Standard deviation 0.14 -
after many measurements 0.12 -
= uhcertainty determined from G (x) 0.1 -
counting statistics from one measurement 0.08 -

0.06
e TFor a large number of measurements, X is @ good 0.04 -
estimate Of the true value. 0.02 -

4 6 8 10 12 14 16 18 20

P



Properties of the Gaussianh Distribution

Probability within: 0.14 -~
1o 0.12 -
1o = j G(X) = 683% 0.1 -
—1o
0.08 -
20
0.06 -
20 = j G(x) = 95.5%
g 0.04 -
2y 0.02 -
30 = f G(x) = 99.7% 0 '
—30 60 70 80 90 100 110

How does this relate if only ohe measurement is made?

IFf onhe measurement is made, there is a 68.3% Chahce that the true value is
withinh one s ahd a 95.5% Chanhce that the true Value is within two S.

120

130

140




Propagationh of Error

The error, gr, Of @ FUNCLION, f(xq,x5,--+, x;)s With x; rahdom
Variables is propagated using the follow method:

of \° [of \° af  \°
2— — — LU S —
of _<6x10x1> +<6x20x2> LR Pl

For example, if D = A — B, then ag = \/(0,)? + (05)?

A 12+0.3 if P=AX B, then g, = /(Ba,)? + (Aop)?
B 10+ 0.4 04\2 o5\’
o= |(a87) +(48)
D 2+0.5
2
P 120 +5.6 oy = P\/

- ) +@ l



!xamme: (JnCertainty onh the ACtivity Of an

(Unshielded Point Source

Cn(E) 1 Here we stress het count rate
A= - with the subscript N.

Y(E) eaps(E)

e Take the simple Case where there is onhly uhcertainty on the het
count rate Cy(E):

- o.,~=0 2 2
-_ GY::O O'j — a—A . 0'2 —_ l . 1 . 0'2
) dC Cn Y EAbs CN

Y - OK so what is O¢y?

Op =
Y - €pps




Net Count Rate
Cy=Cr—C
; N T B -

Net Count Rate \

Background / Continuum
cCount Rate

Total Counht Rate

Cy =2 = —(cT—CB>

Lty ]
/ |

Live Time \

_ Total - Background Counts -




JE——

(JnCertainty on Net CountRate

Assume there is
hO unhcertainty T
0 on the live time

%v = \at, ) 7" \ac, ) °cr T \ac, ) 9cs 1

1 1 2 2
O'CNZE O-gT-I_O-gB:a\/‘/CT ~+ CB
\ )

\( .

The total and baCkgrounhd
counts are assumed to follow

Poisson statistiCs _



JE——

(JncCertainty onh ACtivity of g Bare Point Source

O¢y :\/CT+CB

O'A p— Livetime: 110112 sec Deadtime: 1.95 % Neutrons: NA
Y - ehps tLY « €aps “3
(Jsing the values from our previous example of an i
unshielded point source: :
V7976814 + 153467 /X
O-A — 5 45| ROI Center: 660.40 keV
110112s-0.851:2.7F — 4 Te o com T
a: 78 (+/- 2851)
O-A p— 1 1 3 Bq Energy (keV)

(Jsing a 95% Cconfidence interval (2o):

Our previously-Calculated Activity = 3.1 X 10° + 226 Bq -



Questions or Comments?

—‘
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